S T OALE COPY

3 AD"‘A211 625 'Jél"}fu PR

AL A 4 S L 20

-l

12. 60vY ALCESSION MO 3 OREJIFIENT 'S CATA D) Mumwi &

R PR FSURT Y, R Wi

w

. YYPE OF REPOE" & LD COVERLL

the ﬁom:iler 'aliga:ion gumrery Report:crav 23 Mav 1989 to 23 Mav 1989
esearch, Inc., Crav Ada Compiler, Version 1.1, Crav-2, -

h - 3 N L. M :;
(Host & Target), 890523W1.1008) €. PLNFORMING Dhi. RIPOET wws:t
Y. ACTHORG! t. CONTAAZY OR GRANT NuMii ks,

Wright=Patterson ATE
Dayton, Ok, USA

8. PLAFORMING ORGAN:IZATION AND ADDKRLSS 10, PROCKAS [gwin", PE_0E2Y,

catl TASL
AREA § WORE UNIY WOMERS

Wright-Patterson AFE

Davtorn, OH, US4

11. CONRO.LING OFFICH utu AND ADDRESS 12. RIPGRT DRTE
Aca Joint Program Office
United States De a tment of Defense

washington, DC 20301-3081 3 BB BT PR

14, MOATTORING AGENCY NAML & ADDRLSS(11aifrerent from Controlung Dtuce) 15, SEZUEITY (LASS (o'thurepon,

CVCLASQHWFD
Wright-Patterson ATB

gicb.SS"ICA.XDN ‘DOWNIRAZING
Davton, OE, USA
) N/A

1¢. DISTRIE.TION STATEMINT (of this Repont)

Approved fcr public release; distribution unlimited.

PO LUSTRIELTION ST2TEMINY (ofthe absmramenteresir B o 20 o Herent from Regorm)

JNCLASSIFIED DTIC

ELECTE

JE. S.PF EWINTARY NITES

AUGZ2 1989 B

. e

5. K[YelRl3 (Continue pnseverse 5.0¢ .{ necessony eno dentity by block numbder)

Aca Procrermming lancuage, Afa Compiler Velicdation Summary Report, A

crpiler Valicdetion Capebility, ACVC, Validation Testing, AZa
Valiédztion Office, AVO, AZa Validation Facility, AVF, ANSI/MIL-STD-
1815A, AZa Joint Program Of{fice, AJPO

20. ABSTRAZT (Continue onreverse s:0¢ if necessory anc (Jent:f) by block number)

Cray Besearch, Inc., Cray Ada Compiler, Version 1.1
UNICOS Release 5.0 (Host & Target), ACVC. 1.10.

8Y

» Wright-Patterson AFB, Cray-2 under

DD U= 1473 1CiTi0m 0F 3 ND. 85 38 OBSO.ETL
t JAx 73 $/h D102-LF-D14-860) UNCLASSIFIED

SICURSTY CLASSITIZASION DT YKIS PALL (WhenDatafntered.

AVF Control Number: AVF-VSR-_.4.0789
89-02-23-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890523W1.10081
Cray Research, Inc.

Cray Ada Compiler, Version 1.1
Cray-2

Completion of On-Site Testing:
23 May 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Vright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Vashington DC 20301-3081

“

Ada Compiler Validation Summary Report:

Compiler Name: Cray Ada Compiler, Version 1.1

Certificate Number: 890523W1.10081

Host: Cray-2 under
UNICOS Release 5.0°

Target: Cray-2 under
UNICOS Release 5.0

Testing Completed 23 May 1989 Using ACVC 1.10

This report has been reviewed and is approved.

K ’ !
;;x4é2214; /{E;D ;LC;ZZ;\,
Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

//////7 - p

_—— “/// (R —
Ada«ﬂalldatlon Organization

Or. ‘John F. Kramer

Institute for Defense Analyses

Alexandria VA 22311

‘gzzz;ékxégéz ; ,AiaéZ?Z;;@z&Zfﬁ w_
Ada Joint Program Office

Dr. John Solomond u,‘LrI D}/EC‘I'OA/

Director

Department of Defense

A
Vashington DC 20301 | Aceesston For

' NTIS amagl
'prig Tas 0
’ Unenncanced 0

, Ju. Stiftention

]
!
!
[o S
Di.tribution/

Avallatility Codes
iAvail and/orw
Dist Syrocial

|
A
Y

CHAPTER

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

TABLE OF CONTENTS

INTRODUCTION

—

PURPOSE OF THIS VALIDATION SUMMARY REPORT .
USE OF THIS VALIDATION SUMMARY REPORT .
REFERENCES. . . . e e e e e e e
DEVINITION OF TERMS . o« e e e

ACVC TEST CLASSES .

[U P
(G BF SR UV S

CONFIGURATION INFORMATION

CONFIGURATION TESTED. . . e v e e e e e
IMPLEMENTATION CHARACTERISTICS e v v e e e e

-
o =

TEST INFORMATION

TEST RESULTS. . . o v e e
SUMMARY OF TEST RESULTS BY CLASS e v s v e e
SUMMARY OF TEST RESULTS BY CHAPTER.
VITHDRAWN TESTS « ¢ ¢ ¢ ¢ & ¢ ¢ o o s o ¢ o
INAPPLICABLE TESTS. . .
TEST, PROCESSING, AND EVALUATION HODIFICATIONS.
ADDITIONAL TESTING INFORMATION.
Prevalidation . . . ¢« .+ « ¢« ¢« ¢ & ¢ o o o o
Test Method . . . « « ¢« ¢« ¢ v ¢ « o o »
Test Site . . o

o o o

NN NN B LN

WWwwwwwwwww w NN N
.
W N =

A DECLARATION OF CONFORMANCE

B APPENDIX F OF THE Ada STANDARD

c TEST PARAMETERS

D VITHDRAWN TESTS

wwwwwL‘owwww

[S N R N
1
HMwLwwLnr

[N
1
N -

{
O ~NNNAANINDN

CHAPTER 1

INTRODUCTION

P

e

p -

This Validation Summary Report <¥SR)*-describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability ;-(ACVC)~™ An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
_not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences betwveen compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

Ll T T T)

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal 1language constructs. The testing also identifies benavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

—— e VI/‘

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported bv
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 23 May 1989 at Mendota Heights MN.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free publicedisclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"™ (5
U.S.C.$552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or wvarrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and 15016‘%2‘-!15587.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc., December 1986.

4. Ada Compiler Validation Capability User’s Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Adz Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.
Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler’s conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Vithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing 1is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the

result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message vhen it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests checlt that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters. use small numeric valves, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illega: file name. A 1list of the values used for this validation is

provided in Appendix C.

A compiler must ccrrectly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
wvithdrawvn at the time of this validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATICN TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Cray Ada Compiler, Version 1.1

ACVC Version: 1.10

Certificate Number: 890523W1.10081

Host Computer:

Machine: Cray-2

Operating System: UNICOS
Release 5.0

Memory Size: 64 Megawords

Target Computer:

Machine: Cray-2

Operating System: UNICOS
Release 5.0

Memory Size: 64 Megawords

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementztion. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler <correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

‘4) The compiler correctly processes tests containing recursive
procedures separately compiled as rubunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.
(1) There are no additional predefined types in package STANDARD.
(See tests B86001T..Z (7 tests).)
c. Expression evaluation.
The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. VWhile
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:
(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for

membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes MNUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C43524A..Z.)

. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4A0l4A.)

. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER’ LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

(2) NUMERIC_ERROR is raised when a null array type with
INTEGER’LAST + 2 components is declared. (See test C362024.)

(3) NUMERIC ERROR is raised when a null array type with
SYSTEM.MAX INT + 2 components is declared. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'’LAST

raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER’LAST may raise NUMERIC ERROR or CONSTRAINT_ ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengtns
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

f. Discriminated types.

g.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raisec
wvhen checking whether the expression’s subtype is compatible
wvith the target’s subtype. (See test C52C13A.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
vhen a bound in a non-null range of a2 non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A. .B, EA3004C. .D, and
CA3004E..F.)

1)

(v

(2)

(3)

(4)

(5)

(6)

(7

(8)

(9)

(10)

(11)

(12)

(13)

T R R R R R TES——————

CONFIGURATION INFORMATION

i. Generics

If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the binding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

j. Input and output

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Modes 1IN _FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes 1IN FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE31104, and CE31144A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are given names and not deleted
when closed. (See test CE2108A.)

Temporary direct files are given names and not deleted when
closed. (See test CE2108C.)

Temporary text files are given names and not deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with each

2-5

e L

AT

e

CONFIGURATION INFORMATION

external file for sequentizl files when reading only. {See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

More thar one internal file can be associated with each
external file for direct files when reading only. (See tests
CE2107F..KE (3 tests), ZTE2110D, and CE2131H.)

More than one internal file can be associated with each

external file for text files when reading only. (See tests
CE31114..E, CE31148, and CE31154.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 392 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 229
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for ten tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1125 1946 17 22 44 3281
Inapplicable 2 13 369 0 6 2 392
Vithdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CRAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 196 562 517 242 172 99 158 332 129 36 250 310 278 3281
Inappl 16 87 163 6 O O0 8 0 8 0 2 59 43 392
Vdrn 1 1 0 O0 0 0 O0 2 0 0 1 35 4 4
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D

CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2AB3G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A

CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation 1is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 392 tests were inapplicable for the reasons indicated:

a. The following 229 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113J..Y C35705J..Y C35706J..Y C35707J..Y
C35708J..Y C35802J..2 C45241J..Y C45321J. .Y

C45421J..Y C45521J..2 C45524J..2 C45621J..2
C45641J..Y C46012J..2
3-2

d.

e.

f.

TEST INFORMATION

. €35508I, (C35508J, C35508M, and C35508N are not applicable because they

include enumeration representation clauses for BOOLEAN types in which
the representation values are other than (FALSE => 0, TRUE => 1).
Under the terms of AI-00325, this implementation is not required to
support such representation clauses.

€357024 and BB8600IT are not applicable because this implementation
supports no predeiined type SHORT_FLOAT.

C35702B and B86001U are not applicable because this implementation
supports no predefined type LONG_FLOAT.

The following 16 tests are not applicable because this implementation
does not support a predefined type SHORT_INTEGER:

C45231B C45304B C45502B C45503B C45504B

C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

The following 16 tests are not applicable because this implementation
does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C

C45504F C45611C C45613C C45614C C45631C

C45632C B52004D C55B07A B55B09C B86001VW

CD7101F

. C45231D, B86001X, and CD7101G are not applicable because this

implementation does not support any predefined integer type with a name
other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable

because the value of SYSTEM.MAX MANTISSA is less than 47.

. C86001F is not applicable because, for this implementation, the package

TEXT_I0O is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXT IO, and hence package REPORT,
obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

. B86001Z is not applicable because this implementation supports no

predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_ FLOAT.

CA2009C, CA2009F, BC3204C, and BC3205D are not applicable because this
implementation does not support separate compilation of generic
specifications, bodies, and subunits, if an instantiation is given
before compilation of its bodies or subunits. The created dependency
is detected at bind time.

3-3

TEST INFORMATION

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma INLINE.

CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

CDICO4E is not applicable because this implementation does not support
the crossing of a word boundary.

CD2A31A..B (2 tests), CD2A31D, CD2A32A..D (4 tests), and CD24£321 are
not applicable because this implementation does not support length
clauses for signed integers.

CD2A51A..B (2 tests), CD2ASID..E (2 tests), CD2A52A..D (4 tests),
CD2A521, CD2AS53A..B (2 tests), CD2A53D..E (2 tests), CD2A54A..D (4
tests), and CD2A54I are not applicable because this implementation does
not support size clauses for fixed point types.

CD2A611 and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

CD2A61F and CD2A61H are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of enumeration types.

CD2AB4B..I (B tests) and CD2A8B4K..L (2 tests) are not applicable
because this implementation does not support length clauses for access
types unless the specified size is 64 bits.

CD4041A 1is not applicable because this implementation does not support
record representation clauses with 32 bit alignment.

. AE2101cC, EE2201D, and EE2201E use instantiations of package

SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types with discriminants
vithout defaults. These instantiations are rejected by this compiler.

CE2102D 1is inapplicable because this implementation supports CREATE
vith IN FILE mode for SEQUENTIAL IO.

CE2102E is inapplicable because this implementation swpnorts CREATE
vith OUT_FILE mode for SEQUENTIAL_IO.

. CE2102F is inapplicable because this implementation supports CREATE

vith INOUT_FILE mode for DIRECT_IO.

3-4

aa.

ab.

ac.

ad.

ae.

af.

ag.

ah.

ai.

aj.

ak.

al.

am.

an.

ao.

ap.

TEST INFORMATION

CE2102I is inapplicable because this implementation supports CREATE
vith IN FILE mode for DIRECT_IO.

CE2102J is inapplicable because this implementation supports CREATE
with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN with
IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
IN FILE mode for SEQUENTIAL IO0.

CE2102P 1is inapplicable because this implementation supports OPEN with
OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET with
OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN with
INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESET with
INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN with
IN FILE mode for DIRECT_IO.

CE2102U0 is inapplicable because this implementation supports RESET with
IN FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports open with
OUT_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports RESET with
OUT_FILE mode for DIRECT_IO.

CE2107B..E (4 tests), CE2107L, CE2110B and CE2111D are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for sequential files.
The proper exception is raised when multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because
multiple internal files cannot be associated with the same external
file when one or more files is writing for direct files. The proper
exception is raised when multiple access is attempted.

CE3102E is inapplicable because this implementation supports CREATE
wvith IN_FILE mode for text files.

CE3102F is inapplicable because this implementation supports RESET for
text files.

aq. CE3102G is inapplicable because this implementation supports deletion

3-5

TEST INFORMATION

of an external file for text files.

ar. CE31021I 1is inapplicable because this implementation supports CREATE
vith OUT_FILE mode for text files.

as. CE3102J 1is inapplicable because this implementation supports OPEN vigb
IN_FILE mode for text files.

at. CE3102K 1is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

au. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable
because multiple internal files cannot be associated with the same
external f£ilzs when one or more files is writing for text files. The
proper exception is raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases wvhere legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn’t anticipated by the test (such as
raising one exception instead of another).

Modifications were required for ten tests.

The folloving tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B BA3008A BA3008B BA3013A

C34005G and C34006D required evaluation modifications because the tests include
some comparisons that wuse the ’SIZE attribute under .assumptions that are not
fully supported by the Ada Standard and are subject to ARG review. Thus, the
AVO ruled that an implementation is considered to have passed these tests if the
only REPORT.FAILED output is because of various ’'SIZE checks. This
implementation produced the messages "INCOPRECT TYPE'SIZE", "INCORRECT
OBJECT'SIZE, and "INCORRECT 'BASE’SIZE" for C34005G and the message "INCORRECT
TYPE’ SIZE" for C34006D.

C52008B required modification because this implementation does not support a
recored type with four discriminants of type integer having default values. The
size of this object exceeds the maximum object size of this implementation and
NUMERIC ERROR is raised. At the recommendation of the AVO, the test was
modified to constrain the size of the REC2 discriminants’ subtype. The

3-6

TEST INFORMATION

modification introduced a subtype "SUBTYPE S INTEGER IS INTEGER RANGE 0..127",
and modified 'INTEGER’ to 'S_INTEGER’. This modified version of the test
executes and reports PASSED.

CE3804G required evaluation modification because it requires that the string
"_3.525", when read from a text file using FLOAT_IO, be equal to the litera.
*3,523’, However, because -3.525 is not a model number of the declared type,
the test for equality may legitimately fail, yielding the FAILED message "WIDTH
CHARACTER NOT READ - FLOAT 3". Thus, the AVO ruled that an implementation is
considered to have passed this test if the result is FAILED and the only failure
message is the above-quoted message. This implemenation meets these two
requirements for CE3804G, and the test is passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
Cray Ada Compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3.7.2 Test Method

Testing of the Cray Ada Compiler using ACVC Version 1.10 was conducted on-site
by a validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: Cray-2

Host operating system: UNICOS Release 5.0

Target computer: Cray-2

Target operating system: UNICOS Release 5.0

Compiler: Cray Ada Compiler, Version 1.1

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values vere customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were read from the tape to a front-end machine
(Sun 3/280) using the UNIX tar command across a network. During the testing
process, each source file was read from the front-end machine to the host
computer where it was compiled, linked, and all executable tests run. The
results were then transferred back to the Sun front-end machine where they were
then printed via a network printer interface.

3-7

“

TEST INFORMATION

The compiler was tested using command scripts provided by Cray Research, Inc.
and revieved by the validation team. The compiler was tested using all default
option settings except for the following:

OPTION EFFECT
-v Qutput verbose progress messages. (All tests)
~-L Generate interspersed source-error listing.
(B, E, and L tests only)
~-m Produce executable code for <main_unit>.

(A, C, D, E, and L tests only)

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Mendota Heights MN and was completed on 23 May 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

Cray Research, Inc. has submitted the following Declaration
of Conformance concerning the Cray Ada Compiler.

A-1

Ita

DECLARATION OF CONFORMANCE

Compiler Impiementor: TelieSoft, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45432-6503
Ada Compiier Validation Capability (ACVC), Version 1.10

Base Configuration

Base Compiler Name: Cray Ada Compiler
Compiler Version: 1.1

Host Architecture ISA: CRAY-2
0OS & Versiont: UNICOS Release 5.0

Target Architecture ISA: CRAY-2
0S & Version#: UNICOS Release 5.0

Derived Compiler Registration

Derived Compiler Name: Cray Ada Compiler
Compiler Version: 1.1

Host Architecture ISA: CRAY-2
OS and Versizn #: UNICOS Release 4.0

Target Architecture ISA: CRAY-2
0S and Version #: UNICOS Release 4.0

Implementor's Declaration

I, the undersigned, representing TELESOFT, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that Cray
Research, Inc. is TeleSoft's licensee of the Ada language compiler(s:
listed above and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI/MIL-STD-1815A. All certificates
and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the licensee's corporate name.

a) N

L lomomon dlons onY pate:_/)lary 23 /33‘?
TELESOFT) ()
Raymond A. Parra, General Counsel

‘Director, Contracts

A-2

Licensee's Declaration

I, the undersigned, -epresenting Cray Research, Inc. take full
responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the
final Validation Summary rencr:i. 1 declare that all of the &da
language compiler(s) listed, and their host/target performance

are in compliance with the Ade Language Standard ANSI/MIL-STD-1815A.

AWM Dateﬁ/)(/t.,\%.?.j 1787

/Cray Researcﬁ, Inc.
Bruce White
Ada Project Manager

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowved - implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowved
restrictions on representation clauses. The implementation-dependent
characteristics of the Cray Ada Compiler, Version 1.1, as described in this
Appendix, are provided by TELESOFT. Unless specifically noted othervise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -35184372088832 .. 35184372088831;
type FLOAT is digits 13 range -6.52530E-55 .. 1.53249E+54;

type DURATION is delta 2#1.0#E-14 range -86400 .. B6400;

end STANDARD;

B-1

APPENDIX F
1. Implementation Dependent Pragmas

pragma COMMENT(<string literal>);

It may only appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram _name>, <string_literal>);

It may appear in any declaration section of a unit.

This pragma must also appear directly after an interface pragma
for the same <subprogram_name>. The pragma linkname has the
effect of making string_literal apparent to the linker.

pragma INTERRUPT(Function_Mapping);

It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,

or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(<enumeration_type>,Deferred) or
pragma IMAGES(<enumeration_type>,Immediate);

It may only appear within a compilation unit.

The pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred, which saves space in the literal pool
by not creating an image table for an enumeration type
unless the 'Image, "Value, or "Width attribute for the type
is used. If one of these attributes is used, an image table

is generated in the literal pooi of the compilation unit in
which the attribute appears. If the attributes are used in
more than one compilation unit, more than one image table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESS _ALL;

It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
Suppress_All has the effect of turning off all checks

defined in section 11.7 of the Language Reference Manual.

The scope of applicablility of this pragma is the same as

that of the pre-defined pragma Suppress.

B-2

2. Impiementation Dependent Attributes
INTEGER ATTRIBUTES
’Extended _Image Attribute

Usage: X’Extended Image(Item,Width,Base,Based,Space IF _Posit.ive)
Returns the image associated with Item as per the Text_lo definition.

The Text_lo definition states that the value of Item is an integer

literal with no underlines, no exponent, no leading zeros

(but a single zero for the zero value) and a minus sign if negative.
If the resulting sequence of characters to be output has fewer than
Width characters then leading spaces are first output to make up

the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be an integer value. The resulting string is

without underlines. leading zeros, or trailing spaces.

Parameter Descriptions:

Item — The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width —~ The user may specify the minimum number of

' characters to be in the string that is returned.
If no width is specified then the default (0} is
assumed.

Base — The user may specify the base that the image is
to be displayed in. If no base is specified then
the default (10) is assumed.

Based - The user may specify whether he wants the string
returned to be in base notation or not. If no
preference is specified then the default (false)
is assumed.

Space_If Positive — The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the iollowing would be true:

X'Extended Image(5) = ngn
X'Extended Image(5,0) = 5"
X’Extended Image(5,2) =" gn
X’Extended_lmage(5,0,2) ="101"
X'Extended _Image(5,4,2) =" 101"
X’Extended Image(5,0,2,True) = "24£1014"
X’Extended lmage(5,0,10,False) = ngn

X’Extended:Image(5,0,10,F alse,True) ="5"
X’Extended Image(-1,0,10,False.False) = "-1"

X’Extended Image(-1,0,10,False,True}) ="-1"
X'Extended Image(-1,1,10,False.True) ="-1"
X’Extended Image(-1,0,2,True,True) = "-2#14"

X’Extended_—_lmage(-1,10,2,True,True) =" J2#1#"

'Extended _Value A ttribute

Usage: X'Extended_Value(ltem)

Returns the value associated with Item as per the Text_lo definition.
The Text_Io definition states that given a string, it reads an

integer value from the beginning of the string. The value returned
correspunds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.
Parameter Descriptions:
Item -~ The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.
Examples:
Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended Value("5") =35
X’Extended Value(" 5") =35
X’Extended Value("2#101#") =
X'Extended Value("-1") = .1
X’Extended Value(" -1") =-1

B-5

'Extended_Width Attribute
Usage: X'Extended_Width(Base,Based.Space_lf Positive)
Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute

is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type

or subtype X.

Parameter Descriptions:

Base — The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.
Based — The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.
Space_If Positive — The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended_Width =3 .- "-10"
X’Extended Wldth(lO) =3 - "-10"
X’Extended_Width(2) =5 - "10000"
X’Extended _Width(10,True) =7 --"-10#104"
"24100004"

X’Extended_Width(2,True) =8 -
X'Extended Width(10,Faise,True) =3 -"16"
X'Extended _Width(10,True,False) 7 - "-10#10#"
X'Extended Wndth(lO True,True) =7 --" 10#16%"
9 -
6

X Extended_Wldth(2 True,True) " 2#100004"
X'Extended Width(2,False,True) -- " 10000"

ENUMERATION ATTRIBUTES

’Extended _Image Attribute
Usage: ~X’Ext.ended_lmage(lt.em,Width,Uppercase)

Returns the image associated with Item as per the Text_lo definition.
The Text_lo definition states that given an enumeration literal,

it will output the value of the enumeration literal (either an

identifier or a character literal). The character case parameter

is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item — The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.
Width -- The user may specify the minimum number of characters to

be in the string that is returned. If no width is

specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, then the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of Item then
the default is assumed and the image of the enumeration
value is output completely.

Uppercase -- The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enumeration literals are character
literals, the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

B-7

Examples:
Suppose the following types were declared:

Type X is (red, green. blue, purple);
Type Y is (’a’, 'B’, ’c’, 'D’);

Then tile following would be true:

X'Extended Image(red) = "RED"
X’Extended _Image(red, 4) ="RED "
X’Extended_Image(red,2) = "RED"
X’Extended Image(red.0,false) = "red" .
X’Extended_Image(red,10,false) = "red "
Y’Extended _Image(’a’) ="
Y’Extended _Image(’B’) ="p"
Y’Extended_Image(’a’,6) =Ma "
Y’Extended Image(’a’,0,true) = "a"

’Ext.ended_Value Attribute

Usage: X'Extended Value(ltem)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of

the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT_ERROR is raised.

Parameter Descriptions:

Item ~ The user passes to the function a parameter of the
predefined type string. The type of the returned

wvalue is the base type of X.

Examples:
Suppose the following type was declared:
Type X is (red, green, blue, purple);

Then the following would be true:

X’Extended Value("red") = red
X’Extended Value(" green") = green
X’Extended Value(" Purple") = purple
X’Extended Value(" GreEn ") = green

'Extended_Width Attribute
Usage: X'Extended_Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute
is a function. This attribute yields the maximum image length over

- all values of the enumeration type or subtype X.

Parameter Descriptions:

There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal

in the enumeration type specified by X.

Examples:
Suppose the following types were declared:

Typé X is (red, green, blue, purple);
Type Z is (X1, X12, X123, X1234);

Then the following would be true:

X’Extended Width = 6 -- "purple”
Z’Extended_Width =5 - "X1234"

FLOATING POINT ATTRIBUTES
'Extended _Image Attribute
Usage: X’Extended Image(ltem,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is 0 then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Itemn must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item — The user specifies the item that he wants the image of and
passes it into the function. This parameter 1s required.

Fore -- The user may specify the minimmum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the ’#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft — The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is -<cified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#’ is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is O then no exponent
is used.

Base -- The user may specify the base that the image is to be
displayed in. If no base is specified then the defanlt
(10) is assumed.

Based —~ The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

B-11

Examples:
Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended Image(5.0) = " 5.0000E+00"
X'Extended Image(5.0,1) = "5.0000E+00"
X’Extended _Image(-5.0,1) = ".5.0000E-+00"
X’Extended _Image(5.0,2.0) =" 5.0E+00"
X’Extended Image(5.0,2.0,0) ="5.0"
X’Extended_Image(5.0,2.0,0,2) = "101.0"
X’Extended Image(5.0,2.0,0,2,True) = "2#101.0#"
X’Extended Image(5.0,2,2,3,2,True) = "2#1.14E+02"

’Extended Value Attribute
Usage: X’Extended Value(Item)

Returns the value associated with Item as per the Text_lo definition.
The Text_lo definition states that it skips any leading zeros,

then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT_ERROR is raised.

Parameter Descriptions:

Item - The user passes to the function a parameter of the
predefined tvpe string. The tvpe of the returned
value is the base type of the input string.

Examples:
Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended Value("5.0") = 5.0
X’Extended Value("0.5E1") = 5.0
X’Extended Value("2#1.01#E2") = 5.0

’Extended Digits Attribute
Usage: X'Extended Digits(Base)
Returns the number of digits using base in the mantissa of model
numbers of the subtype X.
Parameter Descriptions:
Base -- The user may specify the base that the subtype is
defined in. If no base is specified then the default
(10) is assumed.
Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended Digits =5

FIXED POINT ATTRIBUTES
’Extended _Image Attribute
Usage: X’Extended_Image(Item.Fore.Aft.Exp.Base.Based)

Returns the image associated with Item as per the Text _lo definition.
The Text lo definition states that it outputs the value of the
paramete; Itemn as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is 0 then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item -- The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore — The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#” if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are ontput first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft — The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing ’#’ is included in aft.

Exp - The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is O then no exponent
is used.

B-14

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.
Based -~ The user may specify whether he wants the string returned
“to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the {ollowing type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X’Extended _Image(5.0) = " 5.00E+00"
X’Extended Image(5.0,1) = "5.00E+00"
X’Extended Image(-5.0,1) = ".5.00E+00"
X’Extended_Image(5.0,2,0) = " 5.0E+0C"
X’Extended_Image(5.0,2,0,0) ="5,0"
X’Extended_Image(5.0,2,0,0,2) = "101.0"
X’Extended Image(5.0,2,0,0,2,True) = "2#101.04"
X'Extended Image(5.0.2,2,3,2,True) = "2#1.1#E+02"

’Extended_Value Attribute
Usage: X’Extended _Value(Image)

Returns the value associated with Item as per the Text _lo definition.
The Text_lo definition states that it skips any leading zeros,

then reads a plus or minus sign if present then read the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.

Parameter Descriptions:
Image -- The user passes to the function a parameter of the

predefined tvpe string. The type of the returned
value is the base type of the input string.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X’Extended Value("5.0") = 5.0
X’Extended_Value("0.5E1") = 5.0
X’Extended_Value("2#1.014E2") =5.0 -

’Extended Fore Attribute
Usage: X"Extended Fore(Base,Based)

Returns the minimum number of characters required for the integer
part ot the based representation of X.

Parameter Descriptions:

Base — The user may specify the base that the subtype would be
displayed in. If no base is specified then the defauit
(10) is assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

B-16

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.1;
Then the following would be true:

X’Extended_Fore =3 --"-10"
X’Extended _Fore(2) =6 - " 10001"

'Extended_Aft Attribute

Usage: X’Extended Aft(Base,Based)

Returns the minimum number of characters required for the fractional
part of the based representation of X.

Parameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based — The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (faise) is assumed.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.1;
Then the following would be true:

X’Extended Aft =1 --"1" from 0.1
X’Extended Aft(2) =4 --"0001" from 2#0.0001#

3. Specification of Package SYSTEM
PACKAGE System IS

TYPE Address is PRIVATE;
TYPE Subprogram_Value is PRIVATE;

TYPE Name IS (CRAY_XMP, CRAY 2);
System_Name : CONSTANT name := CRAY_XMP;

Storage_Unit : CONSTANT := 64;
Memory Size : CONSTANT := (2 ** 24) - 1;

- System-Dependent Named Numbers:

Min_Int : CONSTANT := -(2 ** 45);

Max Int : CONSTANT := (2 ** 45) - 1;

Max_Digits : CONSTANT := 13;

Max_ Mantissa : CONSTANT := 45;

Fine_Delta : CONSTANT := 1.0 / (2 ** Max_Mantissa);
Tick : CONSTANT := 10.0E-3;

— Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0 .. 63;

Max_Text_Jo_Count : CONSTANT := Max _Int-1;
Max_Text_lo_Field : CONSTANT := 1000;

PRIVATE
TYPE Subprogram_Value IS
RECORD
Proc_addr : Address;
Static_link : Address;
Global frame : Address;
END RECORD;
TYPE Address is Access Integer;

END System;

B-18

4. Restrictions on Representation Clauses
The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer tyvpes *SIZE

attribute (LEM 13.2(a))
Length Clauses: for access types 'STORAGE SIZE attritube (LRM13.2(b))
Length Clauses: for tasks types 'STORAGE _SIZE attribute (LRM 13.2(c})
Length Clauses: for fixed point types 'SMALL attribute (LRM12.2(d))
Enumeration Clauses: for character and enumeration types other than

boolean (LRM 13.3)

Record representation Clauses (LRM 13.4)
Address Clauses: for objects and entries (LRM 13.5(2)(c))

This compiler does NOT support the following representation clauses:
Enumeration Clauses: for boolean (LRM 13.3)

Address Clauses for packages. task units, or Ada
subprograms {LRM 13.5(b))

This compiler contains a restriction that allocated objects must
have a minimum allocated size of 64 bits.

5. Implementation dependent. naming conventions
There are no implementation-generated names denoting
implementation dependent components.

6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types or subitypes uniess
the target type is an unconstrained record or array type.

8. I/O Package Characteristics

Sequential IO and Direct IO cannot be instantiated for
unconstrained array types or unconstrained types with discriminants
without default values.

Multiple files opened to the same external file may be opened
only for reading.

In TEXT _10, DIRECT_IO, or SEQUENTIAL_IO, calling procedure Create
with a name of an existing external file does not raise an
exception. Instead, it creates a new version of the file.

In DIRECT 10O the type COUNT is defined as follows:
type COUNT is range 0..2_147 483 647;
In TEXT _10 the type COUNT is defined as follows:
type COUNT is range 0..2_147 483 _646;
In TEXT IO the subtype FIELD is defined as follows:
subtype FIELD is INTEGER range 0..1000:
According to the latest interpretation of the LRM, during a
TEXT _IO.Get_Line call, if the buffer passed in has been filled,
the call is completed and any succeeding characters and/or
terminators (e.g., line, page, or end-of-file) will not be read.
The first Get Line call will read the line up to but not

including the end-of-line mark, and the second Get_Line will read
and skip the end-of-line mark left by the first read.

B-20

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC_SIZE 64
An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

SBIG_ID1 (1..199 => rA’, 200 => '1")
An identifier the size of the
maximum input line length which
is identical to SBIG_ID2 except
for the last character.

$BIG_ID2 (1..199 => 'A’, 200 => *2')
An identifier the size of the
maximum input line length which
is identical to SBIG_ID1 except
for the last character.

$BIG_ID3 (1..99 => ’A’, 100 => 37, 101..200 => ’A’)
An identifier the size of the
maximum input line length which
is identical to SBIG_ID4 except
for a character near the middle.

c-1

TEST PARAMETERS

Name and Meaning Value
SBIG_ID4 (1..99 => rA’, 100 => "4',
- 101..200 => 'A')

An identifier the size of the
maximum input line length which
is identic:” to SBIG_ID3 except
for a character near the middle.

SBIG INT LIT
An integer literal of value 298
wvith enough 1leading zeroes so
that it is the size of the
maximum line length.

SBIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIG_STRING1
A string 1literal which when
catenated vith BIG_STRING2
yields the image of BIG_ID1.

SBIG_STRING2

A string literal which vwhen

catenated to the end of
BIG_STRINGl yields the image of
BIG_ID1.
SBLANKS
A sequence of blanks tventy
characters 1less than the size
of the maximum line length.
$COUMT_LAST
A universal integer
literal vhose value is
TEXT_I0.COUNT'LAST.
SDEFAULT_MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY_ SIZE.
SDEFAULT_STOR_UNIT
An integer literal vwhose value
is SYSTEM.STORAGE_UNIT.

(1..197 => '0’, 198..200 => "298")

(1..195 => ‘0’, 196..200 > "690.0")

(1 => ", 2..101 => ’A’, 102 => '"7)

(1 => ", 2,.100 => ’A’, 101 => 17,
102 => f"r)

(1..180 => ' 1)

2147483646

4294967295

64

TEST PARAMETERS

Name and Meaning Value

SDEFAULT_SYS NAME CRAY 2
The ~ value of the constant
SYSTEM.SYSTEM_NAME.

SDELTA DOC 2#1.04E-45
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELD_LAST 1000
A universal integer
literal vhose value is
TEXT_I0.FIELD'LAST.

SFIXED_NAHE NO_SUCH_TYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAHE NO_SUCH_TYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN DURATION 100000.0
A universal real 1literal that
lies between DURATION’BASE’LAST
and DURATION’'LAST or any value
in the range of DURATION.

SGREATER THAN_DURATION BASE LAST 131073.0
A universal real literal that is
greater than DURATION'BASE’LAST.

SHIGH_PRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL FILE NAME1 BADCHAR*" /%
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAHEZ /NONAME/DIRECTORY
An external file name which
is too 1long.

SINTEGER_FIRST -35184372088832
A universal integer 1literal
vhose value 1is INTEGER’FIRST.

c-3

TEST PARAMETERS

Name and Meaning

Value

SINTEGER LAST
A universal integer literal
vhose value is INTEGER’LAST.

SINTEGER _LAST_PLUS 1
A universal integer literal
vhose value is INTEGER’LAST + 1.

SLESS THAN_DURATION
A~ universal real 1literal that
lies between DURATION’BASE’FIRST
and DURATION’FIRST or any value
in the range of DURATION.

SLESS_THAN DURATION BASE_FIRST
A universal real literal that is
less than DURATION’BASE’FIRST.

SLOW PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

SMAX DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
MaxImum input line 1length
permitted by the implementation.

SMAX_INT
A universal integer literal
vhose value is SYSTEM.MAX INT.

SMAX INT_PLUS 1
A universal integer literal
vhose value is SYSTEM.MAX INT+l1.

$MAX_LEN_INT BASED LITERAL

A universal integer based
literal whose value is 2#11#%
vith enough leading zeroes in
the mantissa to be MAX IN LEN
long. -

35184372088831

35184372088832

-100000.0

-131073.0

45

13

200

35184372088831

35184372088832

(1..2 => "2:", 3..197 => r0',
198..200 => "11:")

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL

A universal real based literal
wvhose velue is 16:F.E: with
enough leading =zeroes in the
mantissa to be MAX IN LEN long.

SMAX STRING LITERAL
A string literal of size
MAX _IN LEN, including the quote
characters.

$MIN_INT
A universal integer literal
vhose value is SYSTEM.MIN INT.

SMIN TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME
A name of a predefined numeric
tvpe other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,
separated by commas.

SNEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEV_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
SDEFAULT_MEM_SIZE. If there is
no other value, then use
SDEFAULT_MEM_SIZE.

Cc-5

(1..3 => "16:", 4..196 => '0’,
197..200 => "F.E:")

(1 =>'", 2..199 => ’C’, 200 => '"')

-35184372088832

64

NO_SUCH_TYPE_AVAILABLE

CRAY_XMP,CRAY 2

164FFFFFFFFFFFFFFFEH

4294967295

TEST PARAMETERS

Name and Meaning Value

SNEV_STOR_UNIT 64
An integer literal whose value
is a permitted argument for
pragma STORAGE _UNIT, other than
SDEFAULT _STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

SNEVW SYS NAME CRAY 2
A value of the type SYSTEM.NAME, -
other than $DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 64
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one ’IN OUT’
parameter.

STICK 10.0E-3

A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.7

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is 1illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object’s size be no
greater than 10 although its subtype’s size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

VITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the ’'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

. CD2A81G, <CD2AE83G, CD2AB4M..N, and CD50110 (35 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a ’'STORAGE_SIZE length

clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2D11B: This test gives a SMALL representation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVQ
vithdravs these tests as being inappropriate for validation.

. CD7105A: This test requires that successive .alls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task’s activation as
though it were like the specification of storage for a collection.

. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

D-2

q.

VITHDRAWN TESTS

CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

. CE3301A: This test contains several calls to END OF LINE and

END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

CE3411B: This test requires that a text file’s column number be set to
COUNT'LAST in order to check that LAYOUT_ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

